Markscheme: Q4-6 P161

4 (a) the resultant force steadily decreases during the first 4 s

it is zero for the all times beyond 4 s

- (b) maximum kinetic energy = $\frac{1}{2} m v^2 = \frac{1}{2} \times 1.4 \times 10^3 \times 16^2$ = $1.8 \times 10^5 \text{ J}$
- (c) when at a constant speed, power P = F v gives $2.0 \times 10^4 = F \times 30$ \therefore driving force F = 670 N
- 5 (a) (i) use of $\Delta E_p = m g \Delta h$ gives $\Delta E_p = 70 \times 9.81 \times 150$ $= 1.03 \times 10^5 \text{ J}$
 - (ii) use of $E_{K} = \frac{1}{2} m v^{2}$ gives $E_{K} = \frac{1}{2} \times 70 \times 45^{2}$ $= 7.09 \times 10^{4} \text{ J}$
 - (b) (i) work done against air resistance = $(1.03 \times 10^5) - (7.09 \times 10^4)$ = 3.21×10^4 J
 - (ii) use of work done = F s gives $3.21 \times 10^4 = F \times 150$ \therefore average resistive force = 210 N (to 2 significant figures)
- 6 (a) use of P = F v gives $1.8 \times 10^4 = F \times 10$ and F = 1800 N
 - **(b) (i)** $250 + F_R = 1800$ gives $F_R = 1550$ N
 - (ii) new air resistance force = $4 \times F_R$ = 6200 N
 - (iii) total resistive force = 6200 + 250 = 6450 Nuse of P = F v gives $P = 6450 \times 20$ = $1.3 \times 10^5 \text{ W}$

- **1 (a)** is an exercise in interpreting the velocity-time graph. The gradient
- decreases over the first 4 s, indicating a decreasing acceleration. Beyond 4 s, the constant velocity shows that there is no acceleration.
- **1** When the car has its maximum kinetic energy it has reached its constant speed,
- which you read from the graph. Take care when doing this: it is **not** 15 m s⁻¹.
- 1 For this part of the question, the car is travelling at a higher constant speed.
- Power is equal to the work done per second, which is (force) \times (distance moved per second), or $F \times v$.
- **1** Part (ii) requires particular care, because you cannot use
- 1 $(E_K \text{ gained}) = (E_P \text{ lost})$. You may only
- become aware of this when you first read through part (b). The skydiver encounters
- significant air resistance and therefore some of the E_p lost becomes thermal energy.
- **1** The 'missing' energy must be equal to the work done.
- **1** The resistive force will increase as the speed of the skydiver increases. This
- **1** result is an average value.
- You are asked to show that this value is 1800 N, and so only one mark is available.
- You know from a that the total resistive force is 1800 N when the speed is 10 m s^{-1} .
- The force due to air resistance is proportional to (speed)², and the speed has doubled.
- You are told that the frictional force of 250 N is constant. Comparing the values
- of power in (a) and (b)(ii), it is clear that this car requires its power to be increased by more than 7 times when the speed is doubled in this way.